Interpretation of the kinetics of consecutive enzyme-catalyzed reactions. Studies on the arginase-urease system.

نویسندگان

  • P W Kuchel
  • L W Nichol
  • P D Jeffrey
چکیده

Physiocochemical properties of beef liver arginase are reported, particular attention being given to its state of aggregation in the concentration range encountered in enzymic assays. It is shown that a species of molecular weight 114,000 is the operational kinetic unit. Evidence is also provided that arginase does not associate heterogeneously with urease, and therefore, in the absence of macromolecular interactions, the arginase-urease couple provides a suitable experimental system to test the applicability of theory previously developed to guide the interpretation of coupled assay results. Application of the theory led to values of the Michaelis constant and maximal velocity describing the first reaction in the sequence, catalyzed by arginase, which agreed within experimental error with the corresponding values obtained by studying the arginase-catalyzed reaction alone. Comment is also made on the product inhibition of arginase by ornithine, which must be considered in the comparison of experimental results describing the time course of a coupled assay with theoretical solutions obtained by numerical integration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling of Reversible Chain Transfer Catalyzed Polymerization by Moment Equations Method

A moment equations method was performed to study the Reversible chain Transfer Catalyzed Polymerization (RTCP) of styrene in 80°C. To do this, a kinetic scheme containing conventional free radical polymerization reactions and equilibrium reactions of RTCP was assumed. After obtaining mass balance equations, three moment equations were defined for free and dormant radicals and dead chains. M...

متن کامل

Potentiometric Study on the Interaction of Hexadecyl Ttimethyl Ammonium Bromide (HTAB) with Urease Enzyme

In this research, the interaction of hexadecyl trimahyl ammonium bromide (HTAB) with enzyme ureasehas been investigated comprehensively at different experimental conditions such as ionic strength, proteinconcentration using ion selective membrane electrode of surfactants. The obtained binding isotherms frompotentiometnc studies have been analyzed by different theories such as Wyman binding pote...

متن کامل

Activation of the Urease - Urea System Using Crude and Crystalline

Many studies of the kinetics of enzyme action as a function of temperature have been made. The older work (for reference cf. Haldane, 1930; Tauber, 1937) indicates that while the velocity of an enzyme-catalyzed reaction increases with rise in temperature, up to the inactivation temperature of the enzyme, this change in rate is not an exponential function of the absolute temperature. I t has bee...

متن کامل

بازدارندگی فلزات سنگین و حلال‌ها بر آنزیم اوره‌آز برای تولید آمونیاک در سنتز داروی ضدفشار خون نیفیدیپین

Introduction: Simultaneous development of technology is composed with environmental hazardous with heavy-metals and organic solvents and thus toxic catalysts/organic solvents must be replaced with biocatalysts and water. Urease is a hydrolase enzyme and urease-urea can be considered a safe source of toxic ammonia in synthesis of nifedipine. Nifedipine is an antihypertensive drug synthesized by ...

متن کامل

Arginase Activity and Its Effects on Pathogenesis of Leishmania

  Leishmaniasis is a tropical parasitic disease that has become a major health challenge in many countries of the world. Not only has not been found any effective vaccine or treatment for the disease eradication, but also the advent of drug resistance is also increasing. Therefore, it is vital to take a precise attention to the physiochemical cycles of the Leishmania parasite and to identify i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 250 20  شماره 

صفحات  -

تاریخ انتشار 1975